Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase.
نویسندگان
چکیده
The endoplasmic reticulum (ER) quality control pathway destroys misfolded and unassembled proteins in the ER. Most substrates of this ER-associated degradation (ERAD) pathway are constitutively targeted for destruction through recognition of poorly understood structural hallmarks of misfolding. However, the normal yeast ER membrane protein 3-hydroxy-3-methylglutaryl-CoA reductase (Hmg2p) undergoes ERAD that is physiologically regulated by sterol pathway signals. We have proposed that Hmg2p ERAD occurs by a regulated transition to an ERAD quality control substrate. Consistent with this, we had previously shown that Hmg2p is strongly stabilized by chemical chaperones such as glycerol, which stabilize misfolded proteins. To understand the features of Hmg2p that permit regulated ERAD, we have thoroughly characterized the effects of chemical chaperones on Hmg2p. These agents caused a reversible, immediate, direct change in Hmg2p degradation consistent with an effect on Hmg2p structure. We devised an in vitro limited proteolysis assay of Hmg2p in its native membranes. In vitro, chemical chaperones caused a dramatic, rapid change in Hmg2p structure to a less accessible form. As in the living cell, the in vitro action of chemical chaperones was highly specific for Hmg2p and completely reversible. To evaluate the physiological relevance of this model behavior, we used the limited proteolysis assay to examine the effects of changing in vivo degradation signals on Hmg2p structure. We found that changes similar to those observed with chemical chaperones were brought about by alteration of natural degradation signal. Thus, Hmg2p can undergo significant, reversible structural changes that are relevant to the physiological control of Hmg2p ERAD. These findings support the idea that Hmg2p regulation is brought about by regulated alteration of folding state. Considering the ubiquitous nature of quality control pathways in biology, it may be that this strategy of regulation is widespread.
منابع مشابه
3-Hydroxy-3-methylglutaryl-coenzyme A reductase and T cell receptor alpha subunit are differentially degraded in the endoplasmic reticulum.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) is located in the endoplasmic reticulum (ER) and responds to rapid degradation which is regulated by mevalonate or sterols. T cell antigen receptor alpha chain (TCR alpha) is also known to be rapidly degraded within the ER. In both cases, the membrane domains of the proteins have a crucial role in their rapid degradation. In or...
متن کاملHuman 3-hydroxy-3-methylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and sterol-regulated degradation.
A full length cDNA for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, the membrane-bound glycoprotein that regulates cholesterol synthesis, was isolated from a human fetal adrenal cDNA library. The nucleotide sequence of this cDNA shows that the human reductase is 888 amino acids long and shares a high degree of homology with the hamster enzyme. The amino-terminal membrane-bound domain ...
متن کاملThe regulated degradation of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase reporter construct occurs in the endoplasmic reticulum.
The rate-limiting enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase, is regulated at a number of levels. One important mechanism is regulation of the half-life of the protein by a controlled proteolytic system. This comes about in response to downstream products of the sterol biosynthetic pathway. Little is known about this system, including where in ...
متن کاملDifferential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system
The endoplasmic reticulum (ER)-resident enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyzes the rate-limiting step in sterol production and is the therapeutic target of statins. Understanding HMG-CoA reductase regulation has tremendous implications for atherosclerosis. HMG-CoA reductase levels are regulated in response to sterols both transcriptionally, through a complex regulat...
متن کاملUbiquitination of 3-hydroxy-3-methylglutaryl-CoA reductase in permeabilized cells mediated by cytosolic E1 and a putative membrane-bound ubiquitin ligase.
The endoplasmic reticulum (ER) enzyme, 3-hydroxy-3-methylglutaryl-CoA reductase, catalyzes the production of mevalonate, a rate-controlling step in cholesterol biosynthesis. Excess sterols promote ubiquitination and subsequent degradation of reductase as part of a negative feedback regulatory mechanism. To characterize the process in more detail, we here report the development of a permeabilize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2004